Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Yong-Tao Wang,* Gui-Mei Tang and Da-Wei Qin

Department of Chemical Engineering, Shandong Institute of Light Industry, Jinan, Shandong 250100, People's Republic of China

Correspondence e-mail: ceswyt@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.037$
$w R$ factor $=0.108$
Data-to-parameter ratio $=10.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2,5-Di-4-pyridyl-1,3,4-oxadiazole-succinic acid (2/1)

位

In the title structure, $2 \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O} \cdot 0 \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$, succinic acid molecules lie on crystallographic inversion centers and a pair of $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds links the three molecules. In addition, $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link this unit into a two-dimensional framework.

Comment

Currently, hydrogen bonding is important in the areas of crystal engineering, supramolecular chemistry, materials science, and biological recognition (Desiraju, 1989; Jeffrey \& Saenger, 1991; Holman et al., 2001). Recently, angular dipyr-idyl-donor basic compounds, such as 2,5-di-4-pyridyl-1,3,4oxadiazole (bpo), have been used to produce a series of infinite/discrete coordination polymers/supramolecules with interesting structures and properties (Dong et al., 2003; Du et al., 2005a,b, and references therein). In our search to identify the properties of co-crystal materials of fatty diacids with linear/angular base components and to further understand the role of synthons in crystal engineering, we have prepared and determined the crystal structure of the acid-base co-crystal, (I), consisting of bpo and the most typical fatty carboxylic acid, succinic acid (Fig. 1).

(I)

A view of the title structure is shown in Fig. 1. The asymmetric unit consists of one bpo molecule and half a molecule of succinic acid; a crystallographic inversion center generates the full molecule of succinnic acid. In the crystal structure, a two-dimensional framework is formed via $\mathrm{O}-\mathrm{H} \cdot \mathrm{N}, \mathrm{C}-\mathrm{H} . \cdot \mathrm{N}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2 and Fig. 2).

Figure 1
View of (I), showing displacement ellipsoids at the 30% probability level. H atoms are represented by circles of arbitrary size. Atoms labelled with the suffix A are generated by the symmetry code $(-1-x, 2-y,-z)$.

Received 26 September 2005
Accepted 5 October 2005
Online 12 October 2005

Experimental

A mixture of 2,5-di-4-pyridyl-1,3,4-oxadiazole ($112 \mathrm{mg}, 0.5 \mathrm{mmol}$) (Dong et al., 2002) and succinic acid ($29 \mathrm{mg}, 0.25 \mathrm{mmol}$) was recrystallized from methanol and water in 70% yield (98 mg), from which a colourless needle-shaped crystal suitable for X-ray diffraction was selected. Analysis found (\%): C 59.01, H 3.90, N 19.85, O 16.84; requires (\%): C 59.36, H 3.91, N 19.78, O 16.94 ; $\mathrm{IR}\left(\mathrm{KBr}, v \mathrm{~cm}^{-1}\right)$: $2450,1705,1612,1569,1537,1413,1276,1206,1011,836,741,723$.

Crystal data

$2 \mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{4} \mathrm{O} \cdot \mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{4}$
$M_{r}=566.54$
Triclinic, $P \overline{1}$
$a=6.4389$ (9) \AA 。
$b=9.5462(13) \AA$
$c=11.0415$ (15) A
$\alpha=94.803(2)^{\circ}$
$\beta=103.666$ (2) ${ }^{\circ}$
$\gamma=96.213(2)^{\circ}$
$V=651.39(15) \AA^{3}$

$$
\begin{aligned}
& Z=1 \\
& D_{x}=1.444 \mathrm{Mg} \mathrm{~m}^{-3}
\end{aligned}
$$

Mo $K \alpha$ radiation
Cell parameters from 400 reflections
$\theta=7.5-23.0^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, pale yellow
$0.43 \times 0.34 \times 0.24 \mathrm{~mm}$
Data collection

Bruker SMART CCD area-detector	2499 independent reflections
\quad diffractometer	2227 reflections with $I>2 \sigma(I)$
φ and ω scans	$R_{\text {int }}=0.010$
Absorption correction: multi-scan	$\theta_{\max }=26.0^{\circ}$
$\quad(S A D A B S ;$ Sheldrick, 1996)	$h=-7 \rightarrow 7$
$T_{\min }=0.956, T_{\max }=0.975$	$k=-11 \rightarrow 11$
3585 measured reflections	$l=-10 \rightarrow 13$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0682 P)^{2}\right. \\
& \quad+0.0637 P] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.22 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }= \\
& \hline 0.18 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1
Selected torsion angles (${ }^{\circ}$).

$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 6-\mathrm{N} 2$	$-5.9(2)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$9.7(2)$

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O2-H2B $\cdots \mathrm{N} 1$	$0.98(2)$	$1.70(2)$	$2.6741(15)$	$174(2)$
C1 $^{\mathrm{i}} \mathrm{H} 1 A \cdots 3^{\mathrm{i}}$	$0.94(2)$	$2.44(1)$	$3.2912(18)$	$151(1)$
C10 $^{\mathrm{H}} 10 A \cdots \mathrm{~N}^{4 i}$	$0.98(2)$	$2.60(2)$	$3.433(2)$	$143(2)$

Symmetry codes: (i) $x+1, y, z$; (ii) $-x,-y-1,-z+1$.

Figure 2
Packing diagram (Spek, 2003), showing hydrogen bonds as dashed lines.

All H atoms were refined independently with isotropic displacement parameters.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1999); software used to prepare material for publication: SHELXTL.

This work was supported by the Starting Fund of Shandong Institute of Light Industry (to YTW).

References

Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Desiraju, G. R. (1989). Crystal Engineering: The Design of Organic Solids. New York: Elsevier.
Dong, Y.-B., Ma, J.-P., Huang, R.-Q., Smith, M. D. \& zur Loye, H.-C. (2003). Inorg. Chem. 42, 294-300.
Dong, Y.-B., Ma, J.-P., Smith, M. D., Huang, R.-Q., Tang, B., Chen, D. \& zur Loye, H.-C. (2002). Solid State Sci. 4, 1313-1320.
Du, M., Zhang,Z.-H. \& Zhao, X.-J. (2005a). Cryst. Growth Des. 5, 1119-1208.
Du, M., Zhang,Z.-H. \& Zhao, X.-J. (2005b). Cryst. Growth Des. 5, 1247-1248.
Holman, K. T., Pivovar, A. M., Swift, J. A. \& Ward, M. D. (2001). Acc. Chem. Res. 34, 107-118.
Jeffrey, G. A. \& Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97, University of Göttingen, Germany.
Sheldrick, G. M. (1999). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

